Low-rank Matrix Optimization for Video Segmentation Research
نویسنده
چکیده
This paper investigates how to perform robust and efficient unsupervised video segmentation while suppressing the effects of data noises and/or corruptions. The low-rank representation is pursued for video segmentation. The supervoxels affinity matrix of an observed video sequence is given; low-rank matrix optimization seeks a optimal solution by making the matrix rank explicitly determined. We iteratively optimize them with closed-form solutions. Moreover, we incorporate a discriminative replication prior into our framework based on the obervation that small-size video patterns, and it tends to recur frequently within the same object. The video can be segmented into several spatio-temporal regions by applying the Normalized-Cut algorithm with the solved low-rank representation. To process the streaming videos, we apply our algorithm sequentially over a batch of frames over time, in which we also develop several temporal consistent constraints improving the robustness. Extensive experiments are on the public benchmarks, they demonstrate superior performance of our framework over other approaches.
منابع مشابه
Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications
Recently, convex formulations of low-rank matrix factorization problems have received considerable attention in machine learning. However, such formulations often require solving for a matrix of the size of the data matrix, making it challenging to apply them to large scale datasets. Moreover, in many applications the data can display structures beyond simply being low-rank, e.g., images and vi...
متن کاملStructured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing
Recently, convex solutions to low-rank matrix factorization problems have received increasing attention in machine learning. However, in many applications the data can display other structures beyond simply being low-rank. For example, images and videos present complex spatio-temporal structures, which are largely ignored by current low-rank methods. In this paper we explore a matrix factorizat...
متن کاملRPCA-KFE: Key Frame Extraction for Consumer Video based Robust Principal Component Analysis
Key frame extraction algorithms consider the problem of selecting a subset of the most informative frames from a video to summarize its content. Several applications such as video summarization, search, indexing and prints from video can benefit from extracted key frames of the video under consideration. Most approaches in this class of algorithms work directly with the input video dataset, wit...
متن کاملSymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering
Nonnegative matrix factorization (NMF) provides a lower rank approximation of a matrix by a product of two nonnegative factors. NMF has been shown to produce clustering results that are often superior to those by other methods such as K-means. In this paper, we provide further interpretation of NMF as a clustering method and study an extended formulation for graph clustering called Symmetric NM...
متن کاملFast Automatic Background Extraction via Robust PCA
Recent years have seen an explosion of interest in applications of sparse signal recovery and low rank matrix completion, due in part to the compelling use of the nuclear norm as a convex proxy for matrix rank. In some cases, minimizing the nuclear norm is equivalent to minimizing the rank of a matrix, and can lead to exact recovery of the underlying rank structure, see [Faz02, RFP10] for backg...
متن کامل